An investigation of industrial desalting process based on artificial neural network
محل انتشار: چهاردهمین همایش بین المللی نفت، گاز و پتروشیمی
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,039
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IOGPC17_089
تاریخ نمایه سازی: 3 آبان 1389
چکیده مقاله:
crude oil contains various amounts of water and inorganic salts that cause lots of penalties during its processing like corrosion , plugging and fouling of equipments , as well as poisoning the catalysts in processing units. Therefore , a desalting plan is often installed in crude oil production units to remove salts and oil -water emulsion from the feed stream. the desalting process includes crude oil washing with fresh water in an AC or AC/DC electrostatic field to remove water and salts from crude oil. the performance of the desalting process depends on various process parameters having simultaneous synergetic effects on each other. in this study the performance of refinery desalters is evaluated by calculating of the salinity and water cut efficiencies using artificial neural network ANN technique. ANN is selected due to its potential for modeling of highly nonlinear phenomena involving in the desalting process.
کلیدواژه ها:
نویسندگان
r golpasha
research institute of petroleum industry
j aminian
chemical engineering department
m safavi
chemical engineering and petroleum dept