Flappy Bird with Deep Reinforcement Learning

سال انتشار: 1396
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 699

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CSCG02_006

تاریخ نمایه سازی: 7 اسفند 1396

چکیده مقاله:

In this paper, a convolutional neural network model recently developed by Minh et al 2015 is applied to evaluate the Qfunction from raw pixel values from the screen. We took advantage of this method for Flappy Bird, a mobile game which is well known for being hard for humans to play. This method is capable of approximating Q-function to allow generalization to unseen states, not only it leads to faster convergence, but also it makes proposed method to be generalize enough to apply for different problems in different domain without changing much

نویسندگان

Amirreza Parhizkar

Dept. of Computer Science, Amirkabir University of Technology, Tehran

Mojtaba Amani

Dept. of Computer Science, University of Bojnord, Bojnord, North Khorasan Province