Developing Lifetime Prediction Model of Lithium-ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 569

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CLEANENERGY06_103

تاریخ نمایه سازی: 1 دی 1398

چکیده مقاله:

Accurate prediction of the useful life of lithium-ion batteries is a great challenge for the researchers and engineers who are involved in battery applications such as electric vehicle and satellite. In this work, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time and temperature. The model parameters are obtained via minimizing prediction errors of the experimental capacity loss for each charge/discharge cycles at 25oC, 35oC, and 45oC. The optimum values of the model parameters are obtained using a genetic algorithm as one of the optimization tools of Matlab software. The model accurately predicts the capacity loss of lithium-ion battery for more charge and discharge cycles at 25 °C with an average error of 4%. The mentioned cycles are used only to validate the prediction.

نویسندگان

Mohammad Zarei-Jelyani

Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran

Mohammad Sarshar

Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran

Mohsen Babaiee

Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran

Nima Tashakor

Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran