Application of artificial neural networks for the prediction of Gaza wastewater treatment plant performance-Gaza strip
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 349
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ARWW-5-1_005
تاریخ نمایه سازی: 24 شهریور 1398
چکیده مقاله:
This paper is concerned with the use of artificial neural network and multiple linear regression (MLR) models for the prediction of three major water quality parameters in the Gaza wastewater treatment plant. The data sets used in this study consist of nine years and collected from Gaza wastewater treatment plant during monthly records. Treatment efficiency of the plant was determined by taking into account of influent input values of pH, temperature (T), biological oxygen demand (BOD), chemical oxygen demand (COD) and total dissolved solids (TSS) with effluent output values of BOD, COD and TSS. Performance of the model was compared via the parameters of root mean squared error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r). The suitable architecture of the neural network model is determined after several trial and error steps. Results showed that the artificial neural network (ANN) performance model was better than the MLR model. It was found that the ANN model could be employed successfully in estimating the BOD, COD and TSS in the outlet of Gaza wastewater treatment plant. Moreover, sensitive examination results showed that influent TSS and T parameters have more effect on BOD, COD and TSS predicting to other parameters.
کلیدواژه ها:
نویسندگان
Mazen Hamada
Department of Chemistry, Faculty of Science, Al Azhar University, Gaza Strip, Palestine
Hossam Adel Zaqoot
Environment Quality Authority, Gaza Strip, Palestine
Ahmed Abu Jreiban
Institute of Water and Environment, Al Azhar University, Gaza Strip, Palestine
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :