ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

بررسی انتخاب ویژگی در طبقه بندی سرطان از طریق الگوریتم شیرمورچه با استفاده از الگوریتم ماشین بردار پشتیبان SVM و شبکه عصبی پرسپترون چند لایه MLP

سال انتشار: 1398
کد COI مقاله: COMCONF06_116
زبان مقاله: فارسیمشاهد این مقاله: 222
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله بررسی انتخاب ویژگی در طبقه بندی سرطان از طریق الگوریتم شیرمورچه با استفاده از الگوریتم ماشین بردار پشتیبان SVM و شبکه عصبی پرسپترون چند لایه MLP

حامد شاهرخی - دانشجوی کارشناسی ارشد مهندسی کامپیوتر، مجتمع آموزش عالی جاوید جیرفت،کرمان، ایران.
سمیه بلوچ محمدرضاخانی - کارشناس ارشد مهندسی کامپیوتر، مجتمع آموزش عالی بهمنیارکرمان، ایران.

چکیده مقاله:

با توجه به توسعه تکنولوژی، ویژگی های مختلف بسیاری جهت تشخیص و پیش بینی سرطان جمع آوری شده اند که بکارگیری تمام این ویژگی ها برای حجم زیادی از موارد سرطانی توسط متخصصان بسیار مشکل می باشد. بنابراین متدولوژی های تجزیه و تحلیل داده کمک بسیار مفیدی به متخصصان هنگام تصمیم گیری در مورد تشخیص و پیش بینیسرطان کرده اند. اخیرا استفاده از داده کاوی در حوزه پزشکی مورد توجه زیادی قرار گرفته است. تکنیک های داده کاوی می توانند برای کشف دانش مورد نیاز استفاده شوند. رشد سریع پایگاه داده های پزشکی در کشورهای پیشرفته، انگیزهای شده است برای اینکه محققین پزشکی از تکنیک های داده کاوی برای استخراج دانش از این پایگاه داده ها استفاده کنند. در این مقاله داده های سرطان شامل تعداد زیادی از ویژگی ها (ژن) و تعداد محدود از نمونه ها است که به بررسی تاثیر انتخاب ویژگی به کمک الگوریتم شیرمورچه بر نرخ طبقه بندی با MLP و SVM می پردازد.

کلیدواژه ها:

سرطان، داده کاوی، طبقه بندی، انتخاب ویژگی، الگوریتم شیرمورچه، الگوریتم ماشین بردار پشتیبان، شبکه عصبی پرسپترون چند لایه

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/923871/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
شاهرخی، حامد و بلوچ محمدرضاخانی، سمیه،1398،بررسی انتخاب ویژگی در طبقه بندی سرطان از طریق الگوریتم شیرمورچه با استفاده از الگوریتم ماشین بردار پشتیبان SVM و شبکه عصبی پرسپترون چند لایه MLP،ششمین کنگره ملی تازه های مهندسی برق و کامپیوتر ایران با نگاه کاربردی بر انرژی های نو،تهران،،،https://civilica.com/doc/923871

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398، شاهرخی، حامد؛ سمیه بلوچ محمدرضاخانی)
برای بار دوم به بعد: (1398، شاهرخی؛ بلوچ محمدرضاخانی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: موسسه غیرانتفاعی
تعداد مقالات: 82
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی