Intelligent Prognostics and Diagnostics of pumps using condition monitoring methods to improve reliability
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 511
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISME27_704
تاریخ نمایه سازی: 8 مرداد 1398
چکیده مقاله:
Predictive maintenance aims to reduce costs of maintenance, improve safety, reliability, efficiency and prevent catastrophic and costly failures by early fault diagnosis and prediction of future status of machines by using condition monitoring methods. Remaining UsefulLife (RUL) estimation of machines can be very complicated due to variant working condition and unique behavior of every machine. As a very attractive field in fault diagnostics and prognostics, Artificial Intelligence have attracted increasing attention from manyresearchers. Pumps are the most used mechanical equipment after motors and annually huge amount of money is spent for their maintenance. In this paper, techniques for intelligent fault diagnosis and Prognosis of pumps using condition monitoring data and ArtificialIntelligence methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVM), Genetic Algorithm (GA) and deep learning methods such as recurrent Neural networks are reviewed. Our findings show advantages, disadvantages, limitations, researchgaps and future trend of research.
کلیدواژه ها:
Prognostics and Health Management ، Centrifugal Pumps ، Condition Monitoring ، Predictive Maintenance ، Artificial Intelligence
نویسندگان
Erfan Ahadi
Master of Science Student, Iran University of science and technology
Mohammad Riahi
Professor of mechanical engineering, Iran University of science and technology