Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid
محل انتشار: مجله علوم نانو، دوره: 5، شماره: 4
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 448
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_NAMJ-5-4_005
تاریخ نمایه سازی: 18 تیر 1398
چکیده مقاله:
Objective (s): Artificial Neural Networks (ANN) are widely used for predicting systems’ behavior. GMDH is a type of ANNs which has remarkable ability in pattern recognition. The aim the current study is proposing a model to predict dynamic viscosity of silver/water nanofluid which can be used as antimicrobial fluid in several medical purposes.Materials and Methods: In order to have precise model, it is necessary to consider all influential factors. Temperature, concentration and size of nano particles are used as input variables of the model. In addition, GMDH artificial neural network is applied to design a proper model. Data for modeling are extracted from conducted experimental studies published in valuable journals. Results: The dynamic viscosity of Ag/water nanofluid is precisely modeled by using GMDH. The obtained values for R-squared is equal to 0.9996 which indicates perfect precision of the proposed model. In addition, the highest relative deviation for the model is 2.2%. Based on the values of these statistical criteria, the model is acceptable and very accurate. Conclusion: GMDH artificial neural network is reliable approach to predict dynamic viscosity of Ag/water nanofluid by using temperature, concentration and size of particles as input data.
کلیدواژه ها:
نویسندگان
Fatemeh Mohamadian
Post graduate student of pediatric Dentistry, Department of pediatric dentistry, Faculty of dentistry, Shahid Beheshti University of medical sciences, Tehran, Iran
Leila Eftekhar
Post graduate student of pediatric Dentistry, Department of pediatric dentistry, Faculty of dentistry, Shahid Beheshti University of medical sciences, Tehran, Iran
Yashar Haghighi Bardineh
Department of Biomedical Engineering, Tehran Medical Branch, Islamic Azad University, Terhan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :