Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 511
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACET-1-2_001
تاریخ نمایه سازی: 18 تیر 1398
چکیده مقاله:
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However, only a few methods are utilized for huge text classification problems. In this paper, we propose a new wrapper method based on Particle Swarm Optimization (PSO) algorithm and Support Vector Machine (SVM). We combine it with Learning Automata in order to make it more efficient. This helps to select better features using the reward and penalty system of automata. To evaluate the efficiency of the proposed method, we compare it with a method which selects features based on Genetic Algorithm over the Reuters-21578 dataset. The simulation results show that our proposed algorithm works more efficiently.
کلیدواژه ها:
نویسندگان
Mozhgan Rahimirad
Ahvaz Branch, Islamic Azad University, ahvaz, Iran
Mohammad Mosleh
dezfool Branch, Islamic Azad University, ahvaz, Iran
Amir Masoud Rahmani
Department of Computer Engineering, Science and Research Branch, Islamic Azad University