Prediction of mole fraction solubility of drugs in supercritical carbon dioxide by using artificial neural network (ANN) method in comparison with semi-empirical models
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 519
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ENGCONF02_079
تاریخ نمایه سازی: 1 تیر 1398
چکیده مقاله:
In this study, the solubility of drugs in supercritical carbon dioxide (scCO2) was represented by using the artificial neural network (ANN). Prediction results were compared with nine various models. This research has used a multilayer feedforward network with Levenberg Marquardt backpropagation training for prediction. Original data were divided into two parts where 70% of data was used as training data and remaining 30% of data was used for testing. In this method, inputs are pressure and temperature. The number of neurons is set at four. Using ANN for predicting mole fraction solubility of drugs in scCO2 leads to less deviation compared to other proposed models and it is in good agreement with experimental data
کلیدواژه ها:
نویسندگان
Ali Akbar Amooey
Associate Professor, Faculty of Chemical Engineering, University of Mazandaran, Babolsar, Iran.
Meysam Akbarian Shourkaei
MSc student, Faculty of Chemical Engineering, University of Mazandaran, Babolsar, Iran.
Amirhossein Rezayan
MSc student, Faculty of Chemical Engineering, University of Mazandaran, Babolsar, Iran.