Numerical Solution of First-Order differential equation based Z-numbers using Neural Network

سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 541

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IDS03_065

تاریخ نمایه سازی: 31 اردیبهشت 1398

چکیده مقاله:

In this work, we have the general form of a First-Order differential equation based Z-Valuations. Then a new method for solving these equations using generalized neural networks offer. The proposed method consists of a function is based on Z-Valuations. that s mean, ??(Z Tt)=(?AT?(?t),?BT ?(?t)), The first component,BT(?t), is a restriction (constraint) on the values which a real-valued uncertain variable,AT (?t ), is allowed to take. The second componentis a measure of reliability (certainty) of the first component. Since the function values and are fuzzy. We use the technique of α- cutting, both the above functions will be converted to real functions. that s mean, ?ZT?(t)=((AT1?1(?t),?AT2?2(t)),(BT1(t),B T2(?t))). Then, using the method of least squares error, we trained neural network so that the solution proposed is a convenient approximation of the exact answer. An example is shown in a proposed method, an appropriate method to approximate the original answer.

نویسندگان

Nader Biranvand

Department of Mathematics, Faculty of Basic Sciences Imam Ali University, Tehran, Iran

Somayeh Ezadi

Department of statistics, Tehran North Branch, Islamic Azad University, Tehran, Iran

Ashkan Moradi

Department of Mathematics, Islamic Azad University of Sama Kermanshah Branch, Kermanshah, Iran