A Modified Neural Networks Approach for Solving Quadratic Programming Problems with equality and inequality constraints
محل انتشار: سومین کنفرانس سیستم های تصمیم گیری هوشمند
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 543
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IDS03_006
تاریخ نمایه سازی: 31 اردیبهشت 1398
چکیده مقاله:
In this paper, a modified neural network model for solving a class of constrained quadratic optimization problems is proposed. It is proved that the proposed neural network is globally stable in the sense of Lyapunov, and the output trajectory of the proposed neural network will converge globally to an optimal solution. The validity and transient behavior of the proposed neural network are demonstrated by using two numerical examples
کلیدواژه ها:
dynamical system ، strictly convex quadratic programming ، stability ، global convergence ، recurrent neural network.
نویسندگان
A Ghomashi
Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
M Abbasi
Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran