Classification of Epileptic Seizure in EEG Signal Using ANFIS and Optimized Statistical Features by Genetic Algorithm

سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 646

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ELECTRICA05_009

تاریخ نمایه سازی: 31 اردیبهشت 1398

چکیده مقاله:

Epilepsy attributed to a known brain disorder in which nerve cells receive excessive abnormal neuronal firings. Identification and classification of the epileptic and non-epileptic electroencephalographic signals play an important role in clinical investigations. In this study, we used in vivo EEG signals recorded from epilepsy patients during the seizure and seizure-free intervals. We proposed an EEG analysis of seizure detection, based on a cascade of four stages: 1) stationary parts of EEG signals were decomposed into five time-frequency sub-bands using discrete wavelet transform (DWT) .2) statistical features were extracted from wavelet coefficients in each frequency band. 3) The feature sets were passed through a genetic algorithm to extract optimized number of features along each time pointed. 4) The overall accuracy of the classification and performance of the ANFIS network using selected features were presented. Our results reached 99.4% accuracy by just mean statistical feature. This paper verified the performance and usefulness of such a cascade system for diagnosing seizure events once there are suspected clinical symptoms of epileptic specifically in newborns.

کلیدواژه ها:

نویسندگان

Mahrad Puryusef Miandoab

Department of Electrical Engineering University of Neyshabur Neyshabur, Iran

Mahdieh Ghasemi

Department of Biomedical Engineering University of Neyshabur Neyshabur, Iran