Machine Learning Models for Recognizing High Performing Metal Organic Frameworks for Natural Gas Purification
محل انتشار: ششمین کنفرانس بین المللی علوم مهندسی و تکنولوژی
سال انتشار: 1396
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 386
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NSOECE06_049
تاریخ نمایه سازی: 26 مرداد 1397
چکیده مقاله:
Metal-organic frameworks have gained interest because of their exceptionally high porosities and chemically tunable structures. In this direction, recent In-silico generation of libraries with thousands to millions of hypothetical materials and subsequently high-throughput (HT) computational screening as a part of material discovery process, illustrate the demand of more efficient computational tools compared to traditional grand canonical Monte Carlo (GCMC) simulations which can be resource-demanding. Here, we report machine learning classifier models for CO2/CH4 separation parameters that utilize separately the Voronoi hologram and Atomic Property-Weighted Radial Distribution Function (AP-RDF) descriptors. We compare their performance with previously reported classifiers models. For this, the classifiers are trained on 32,450 MOFs and then are tested on the 292,050 MOFs that are not part of the training set. From the comparison, it is found that including AP-RDF and Voronoi hologram descriptors into the classifiers improves the performance of classifiers by 20% in capturing high-performing MOFs
کلیدواژه ها:
نویسندگان
Mohammad Zein Aghaji
Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, ۱۰ Marie Curie Private, Ottawa K۱N ۶N۵, Canada
Michael Fernandez
Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, ۱۰ Marie Curie Private, Ottawa K۱N ۶N۵, Canada
Peter G. Boyd
Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, ۱۰ Marie Curie Private, Ottawa K۱N ۶N۵, Canada
Thomas D. Daff
Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, ۱۰ Marie Curie Private, Ottawa K۱N ۶N۵, Canada