Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 462

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAEHR-4-2_002

تاریخ نمایه سازی: 1 مرداد 1397

چکیده مقاله:

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models were developed using MATLAB R2014 software program. The artificial intelligence models were trained with the data collected from field and then utilized as prediction tool. Levenberg-Marquardt (LM) and Bayesian regularization (BR) algorithms were employed as ANN training algorithms and their performance was evaluated using determination coefficient and the root mean square error. The results showed that the ANN models could potentially forecast heavy metals concentration in groundwater resources of the studied area. Coefficients of determination for ANN models for As, Pb and Zn in testing phase were 0.9288, 0.9823 and 0.8876, respectively. Finally, based on the simulation results, it was demonstrated that ANN could be applied effectively in forecasting the heavy metals concentration in groundwater resources of Asadabad plain.

نویسندگان

Meysam Alizamir

Department of Civil Engineering, Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Soheil Sobhanardakani

Department of the Environment, School of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran