Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 30، شماره: 5
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 521
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-30-5_008
تاریخ نمایه سازی: 6 شهریور 1396
چکیده مقاله:
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base classifiers. Then, several base classifiers are selected according to their diversity and the scale of them. Weights of the selected base classifiers are calculated based on a measure of support rate. The classifier ensemble is constructed by the base classifiers. The accuracy reached 98.44% which is 4.5% higher than that of the three base classifiers
کلیدواژه ها:
نویسندگان
m heidari
Department of Mechanical Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran