A Review of Graph-Based Methods in Semi-Supervised Learning

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 819

فایل این مقاله در 11 صفحه با فرمت PDF و WORD قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NSOECE05_075

تاریخ نمایه سازی: 10 تیر 1396

چکیده مقاله:

Nowadays, due to the increasing growth of information bulk, it seems necessary to have a system to automatically classify the texts. In past 10 years, management based on text content has gained more account as a consequence of rapid growth and availability of textual documents in digital form. Text classification is used for the practice of subject-based labeling of natural language texts, in accordance with a pre-determined set. Currently, text classification is practical in wide range of contexts, from text indexing, based on a controlled glossary, to text filtering, automatic production of metadata, word clarification, production of hierarchical catalogues from the existing web sources, and in general in any case wherein the aim is to organize the documents or distribute them selectively and comparatively in a certain way. This paper deals with graph-construction methods, surveying five graph-based methods in semi-supervised learning, namely Min-cut method, Manifold Regulation, multiple label, harmonical compositions, and harmonical function by means of Laplasian Matrix.

نویسندگان

Mohsen Hajighorbani

Young Researchers and Elite Club Islamic Azad University Qazvin, Iran

Seyyed Mohammad Reza Hashemi

Young Researchers and Elite Club Islamic Azad University Qazvin, Iran

Saadati Mahdi

Faculty of Computer and Information Technology Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Maryam Faridpour

Young Researchers and Elite Club Islamic Azad University Qazvin, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Bagheri, H. Farzanehfar, M. H. Soraie, M. R. Ahmadzadeh, ...
  • Asif Ekbal, SriparnaSaha, Simulated annealing based classifier ensemble techniques: Application ...
  • Limeng Cui, Yong Shi, A Method based on One-clas SVM ...
  • Li, Y.H., Jain, A.K. "Classification of text documents", Computer Journal, ...
  • Li, Wei; Lee, Bob; Krausz, Franl and Sahin, Kenan. Text ...
  • Soucy, P., Mineau, G.W."A simple KNN algorithm for text categorization ...
  • Joachims, Thorsten.Tex Categorization with Support Vector Machines: Learning with Many ...
  • M. Arabsorkhi, M. Shamsfard, "Unsupervised Discovery of Persian Morphemes, " ...
  • M. E. Basiri, S. Nemati, N. G. Aqaie, "Comparison of ...
  • B. Bina, M. Rahgozar, and A. D. Mobad, "Automatic Persian ...
  • N. Maqsudi, and M. M. Homayunpur, "A Novel Method For ...
  • M.S.B. PhridviRaj, C.V. GuruRao, Data Mining - Past, Present and ...
  • Mohsen Ramezani, Parham Moradi, F ardinAkhl aghian, A pattern mining ...
  • Chrys talleniLazarou, Minas Karaolis, Antonia-Leda Matalas, Demosthenes B. Panagiotakos, Dietary ...
  • CYKIDS study, Computer Methods and Programs in Biomedicine, Volume 108, ...
  • Edrisi Muoz, Eli S ab etC apon-Garcia, Jose M. Lainez ...
  • Zhenhua Wang, Lai Tu, ZheGuo, Laurence T. Yang, Benxiong Huang, ...
  • Dirk Thorleuchter, Dirk Van den Poel, Anita Prinzie, Mining ideas ...
  • Xiaofei Zhou, Yue Hu, Li Guo, Text Categorization based On ...
  • نمایش کامل مراجع