A Review of Graph-Based Methods in Semi-Supervised Learning
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 819
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NSOECE05_075
تاریخ نمایه سازی: 10 تیر 1396
چکیده مقاله:
Nowadays, due to the increasing growth of information bulk, it seems necessary to have a system to automatically classify the texts. In past 10 years, management based on text content has gained more account as a consequence of rapid growth and availability of textual documents in digital form. Text classification is used for the practice of subject-based labeling of natural language texts, in accordance with a pre-determined set. Currently, text classification is practical in wide range of contexts, from text indexing, based on a controlled glossary, to text filtering, automatic production of metadata, word clarification, production of hierarchical catalogues from the existing web sources, and in general in any case wherein the aim is to organize the documents or distribute them selectively and comparatively in a certain way. This paper deals with graph-construction methods, surveying five graph-based methods in semi-supervised learning, namely Min-cut method, Manifold Regulation, multiple label, harmonical compositions, and harmonical function by means of Laplasian Matrix.
کلیدواژه ها:
نویسندگان
Mohsen Hajighorbani
Young Researchers and Elite Club Islamic Azad University Qazvin, Iran
Seyyed Mohammad Reza Hashemi
Young Researchers and Elite Club Islamic Azad University Qazvin, Iran
Saadati Mahdi
Faculty of Computer and Information Technology Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Maryam Faridpour
Young Researchers and Elite Club Islamic Azad University Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :