Optimizing Diameter of Carbon Nanotubes in CVD Processing with Neural Network
محل انتشار: نخستین همایش ملی توسعه در علوم و صنایع شیمیایی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 848
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SCIC01_077
تاریخ نمایه سازی: 10 تیر 1396
چکیده مقاله:
Carbon nanotubes are forth allotrope of, which have various properties such as: high strength, thermal and electrical conductivity, high young modulus and high corrosion resistibility. This noble physical and chemical properties can lead them to different applications in industrial, medicine and etc. Different methods exist to synthesis carbon nanotubes; such as laser ablation, arc discharge and chemical vapor deposition. Chemical vapor deposition (cvd) is the attractive way to produce carbon nanotubes. Most properties of carbon nanotubes such as: electrical, mechanical and magnetic properties; depend on length and diameter of them and on the other hand; artificial neural networks (Ann) technique is a method for calculating and processing database bases to achieve desired output parameters. In this paper, predict diameter of carbon, which synthesized via chemical vapor deposition with low percentage error (7%) by optimizing production primary parameters and sensitivity analysis of effective factors determined
کلیدواژه ها:
diameter of carbon nanotubes predict ، Artificial Neural Network ، chemical vapor deposition ، sensitivity analysis
نویسندگان
Seyed Oveis Mirabootalebi
Material science and engineering, Shahid Bahonar university of kerman,
Reza Mirahmadi Babaheydari
Material science and engineering, Shahid Bahonar university of kerman,
Gholam Reza Khayati
Department of Materials Science and Engineering, Shahid Bahonar University of Kerman,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :