Modeling of tractive performance of Massey Ferguson tractor (MF 285) in different field conditions using artificial neural networks

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 624

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NCAMEM10_178

تاریخ نمایه سازی: 6 اسفند 1395

چکیده مقاله:

Implementation of tractors in agriculture is Substantial as a power supply. Therefore, performance model for developing parameters of tractors and implements are major for farm machinery, operators and manufacturers alike. The objective of this study was to assess the predictive capability of several configurations of ANNs for performance evaluating of tractor in parameters of drawbar power, rolling resistance and tractive efficiency. A conventional tillage system which included a moldboard plow with three furrows was used for collecting data from MF285 Massey Ferguson tractor. To predict performance parameters, ANN models with back-propagation algorithm were developed using a MATLAB software with different topologies and training algorithms. For drawbar power. The best result was obtained by the ANN with 6-7-1 topology and Bayesian regulation training algorithm with R2 of 0.995 and MSE of 0.00024. The obtained result showed that the 6-7-1structred ANN with Levenberg-Marquardt training algorithm represents a good prediction of TE with R2 equal to 0.989 and MSE of 0.001327. The obtained results confirmed that the neural network can be able to learn the relationships between the input variables and performance parameters of tractor, very well.

نویسندگان

Salim Almaliki

PhD student, Department of Agricultural Machinery, University of Basrah, Basrah, Iraq. - Faculty member, Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Reza Alimardani

Faculty member, Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Mahmoud Omid

Faculty member, Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abd ElWahed, M. Aboukarima. "Draft models of chisel plow based ...
  • Arriagada J, Olausson P, Selimovic A. Artificial neural network simulator ...
  • Cakmak G, Y1ldz C. The prediction of seedy grape drying ...
  • Carman, K. (2008). Prediction of soil compaction under pneumatic tires ...
  • Carman, K, & Taner, A. (2012). Prediction of tire tractive ...
  • Cay Y, Korkmaz I, Ciek A, Kara F. Prediction of ...
  • Demuth, H., and Beale, M. Neural NetworkTo olbox for Use ...
  • Douik A, Abdellaoui M (2008) Cereal varieties classification using wavel ...
  • Ekinci S, Carman K, Kahramanli l (2015). Investigation and modeling ...
  • Kashaninejad M, Dehghani AA, Kashiri M (2009) Modeling of wheat ...
  • Khoshnevisan B, Rafiee S, Omid M, Yousefi M, Movahedi M. ...
  • Nayak, P.C. K.P. Sudheer, D.M. Ragan and K.S. Ramasastri, (2004).A ...
  • Roul, A. K., Raheman, H., Pansare, M. S., & Machavaram, ...
  • Safa M, Samarasinghe S, Mohsen M. Modeling fuel consumption in ...
  • Safa, M., & Samarasinghe, S. (2013). Modelling fuel consumption in ...
  • Taghavifar, H. Mardani, A. (2014). On the modeling of energy ...
  • Taghavifar, H., Mardani, _ Karim-Maslak, H., & Kalbkhani, H. (2013). ...
  • Young JS, Lin YP, Shih PW. Neural network approach to ...
  • Zarifheshat S, Rohani A, Ghassemzade HR, Sadeghi M, Ahmadi E, ...
  • نمایش کامل مراجع