Text Classification: process and Algorithms

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 697

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

RSTCONF03_190

تاریخ نمایه سازی: 6 بهمن 1395

چکیده مقاله:

As the volume of information available on the Internet and corporate increases,there is growing interest in developing tools to help people better find, filter, andmanage these electronic resources. The aim of text classification is to buildsystems which are able to automatically classify documents into categories. Textis cheap but information in the form of knowing what classes a text belongs to isexpensive. Automatic classification of text can provide this information at lowcost. Proper classification of e-documents, online news, emails and digitallibraries needs text mining, machine learning and natural language processingtechniques to get meaningful knowledge. This paper provided a review of textclassification process including documents collection, pre-processing, indexing,feature selection and classification. Moreover, it studied the main algorithms intext classification such as Bayesian classifier, Decision Tree, Decision Rule, Knearest neighbor(KNN), Support Vector Machines(SVMs), Neural Networks,Rocchio’s Algorithm, Fuzzy Correlation and Genetic Algorithms.

کلیدواژه ها:

نویسندگان

Shahnaz Baghbani

ACECR Institute of Higher Education [Isfahan Branch], Isfahan

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Dasgupta. (2007). Feature selection methods for text classification. In ...
  • A.Khan, B.Baharudin, L.Hong Lee, KH.Khan. (2010). A Review of Machine ...
  • Amy J.C. Trappey a, Fu-Chiang Hsu _ Charles V. Trappey ...
  • Bayes Jingnian Chen a, b, Houkuan Huang a, Shengfeng Tian ...
  • Cheng Hua Li, Soon Choel Park. (2009). An efficient document ...
  • Chih-Hung Wu. (2009). _ ehavior-based span detection using a hybrid ...
  • David D. Lewis and Marc Ringuette. (1994). A comparison of ...
  • D. E. Johnson F. J. Oles T. Zhang T. Goetz. ...
  • Eiji Aramaki and Kengo Miyo. (2006). Patient status classification by ...
  • Fang Lu Qingyuan Bai. (2010). A Refined Weighted K-Nearest Neighbours ...
  • F.Sebastiani. (2002). Machine learning in automated text categorization" ACM Computing ...
  • Gongde Guo, Hui Wang, David Bell, Yaxin Bi and Kieran ...
  • HAO CHEN, YAN ZHAN, Y AN LI. (2010). The Application ...
  • Hein Ragas Cornelis H.A. Koster. (1998). Four text classification algorithms ...
  • Kwangcheol Shin, Ajith Abraham, and Sang Yong Han. (2006). Improving ...
  • Kjersti Aas and Line Eikvil. (1999). Text Categorization: A Survey. ...
  • M.Farhoodi, A.Yari. (2010). Applying Machine Learning Algorithms for Automatic Persian ...
  • Michael Pazzani Danicl Billsus. (1997). Learning and Revising User Profiles ...
  • Michael J. Pazzani. (1988). Searching for dependencies in Bayesian classifiers. ...
  • Miguel E .Ruiz, Padmini Srinivasn. (1997). Automatic Text Categorization Using ...
  • Mnish Mehta, Rakesh agrwal. (1996). SLIQ: A Fast Scalabe Classifier ...
  • Muhammed Miah. (2009). Improved k-NN Algorithm for Text Classification Department ...
  • Pegah Falinouss. (2007). Stock Trend Prediction using News Article's: a ...
  • Peerapon Vateekul and Miroslav Kubat. (2009). Fast Induction of Multiple ...
  • Categorization from Large Scale, Imbalanced, and Multi-label Data. IEEE International ...
  • Su-Jeong Ko and Jung-Hyun Lee. (2001). Feature Selection Using Association ...
  • Susan Dumais John Platt David Heckerman. (1998). Inductive Learning Algorithms ...
  • Tai-Yue Wang and Huei-Min Chiang. (2009). One -Against-One Fuzzy Support ...
  • W.Willian Cohen and Yoram Singer. (1996). Context- sensitive learning method ...
  • Merrill lynch. (Nov. 2000). e-Business Analytics: Depth Report. ...
  • Yirong Shen and Jing Jiang. (2003). Improving the Performance of ...
  • ZHU Zhen-fang, LIU Pei-yu, Lu Ran. (2008). Research of text ...
  • نمایش کامل مراجع