Analyzing Volatility Spillovers with the Multivariate FIGARCH Modeling: A case study of Tehran and Dubai stock index
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 624
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MRMEA03_204
تاریخ نمایه سازی: 6 بهمن 1395
چکیده مقاله:
The expansion of Globalization not only affects developed countries’ financial markets, but also the markets in developing countries. This condition causes investors who diversify their asset portfolio in foreign markets, pay serious attention to links between stock markets. This fact implies that there is an equilibrium relation between financial markets. Most of these markets have long-run memory characteristic which should be considered in modeling and estimation. Long memory in asset returns and volatilities is a new research area, both in theoretical and empirical modeling of high-frequency financial time series. The present paper aims to extend Constant Conditional Correlation (CCC) multivariate GARCH models to take into account the presence of long memory in daily financial time series. The extended model is more adaptable to real-world conditions, and it takes the long memory effect into account and estimates it throughout the estimation process. In order to justify the applicability of the proposed model, we investigated volatility spillover among the Tehran stock index, the Dubai stock index, and the global oil-price index using the MFIGARCH model covering the period from December 5, 2006 to January 30, 2012. The results of the estimation by different models generally showed volatility spillover from the global oil market to the Tehran and Dubai markets. Significant volatility spillover from the Dubai market to Tehran was observed as well, while no spillover effect was observed in the reverse direction.
کلیدواژه ها:
نویسندگان
Seyed Babak Ebrahimi
Department of Industrial Engineering, K.N.Toosi University of Technology, Tehran, Iran
Maryam Nezhad Afrasiabi
Department of Industrial Engineering, K.N.Toosi University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :