Fully Connected Recurrent Neural Network MPPT Control Design For DFIG Wind Energy Conversion Systems

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 580

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

KBEI02_177

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

This paper presents a new maximum-power-point-tracking (MPPT) controller in wind energy conversion systems (WECS) using artificial neural networks (ANN) in order to make the wind turbine generator get the optimal efficiency from wind energy at different operating conditions. The algorithm uses fully connected recurrent neural network and is trained online using real-time recurrent learning (RTRL) algorithm. The inputs to the networks are the rotor speed and wind-turbine torque, and the output is the rotor speed command signal for the WECS. Simulation results verify the performance of the proposed algorithm.

کلیدواژه ها:

نویسندگان

Mohsen Davoudi

Department of Electrical Engineering, Imam Khomeini International University, Qazvin, Iran

Amin Kasiri Far

Department of Electrical Engineering, Imam Khomeini International University, Qazvin, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Input dataset is a series of m numbers between _ ...
  • Target dataset is a series of m numbers as ...
  • Copyright Notice is: 9 78-1 -4673-6506-2/ _ 00 C2015 IEEE ...
  • IEEE-2015, _ International Conference on Knowledge- Based Engineering and Innovation ...
  • Tan K, Islam S. Optimum control strategies in energy conversion ...
  • Kolhe M, Joshi JC, Kothari DP. Performance analysis of a ...
  • Andersen GK, Klumpner C, Kjaer SB, Blaabjerg F. A new ...
  • S. Bhowmik, . Spee, and J. H. R. Enslin, "Performance ...
  • H. Li, K. L Shi, and P. G. McLaren, _ ...
  • M. Chinchill, S. Amaltes, and J. C. Burgos, "Control of ...
  • R. Hilloowala and A M. Sharaf, "A rule-based fuzzy logic ...
  • R Chedid, F. Mard, and M. Basma, "Intelligent control of ...
  • K. tan and S. Islam, "Optimum control strategies in energy ...
  • _ _ _ _ intelligent control of a variable-speed cage ...
  • _ _ July/August 2001. ...
  • F. M. Rodrigo, l M. R. Gonzalez, lAD. Vazquez, and ...
  • R Datta and V T Tanganathan, "A method of tracking ...
  • Q. Wang and L Chang, "An independent maximum power extraction ...
  • N. Yamamura, M. Ishida, and T Hori, "A simple wind ...
  • _ _ _ system for wind-energy-c onversion applications, " IEEE ...
  • Y. Chen, Y. Liu, S. Hung, and C. Cheng, "Multi-input ...
  • Copyright Notice is: 9 78-1 -4673-6506-2/ _ 00 C2015 IEEE ...
  • IEEE-2015, _ International Conference on Knowledge- Based Engineering and Innovation ...
  • _ _ _ Systems, " ...
  • LEONHARD, W.: Control of electrical drives; (Springer-Verlag, 1985) ...
  • JONES, S.R., and JONES, K.: _ strategy for sinusoidal supply ...
  • R. Pena, J.C. Clare, G.M. Asher, "Doubly fed induction generator ...
  • Shuhui Li, Rajab Challoo, and Marty J. Nemmer, s eomparative ...
  • Copyright Notice is: 9 78-1 -4673-6506-2/ _ 00 C2015 IEEE ...
  • نمایش کامل مراجع