A Novel Association Rule Mining Using Genetic Algorithm
محل انتشار: هشتمین کنفرانس بین المللی فناوری اطلاعات ودانش
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 665
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIKT08_045
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
Today, development of internet causes a fast growth of internet shops and retailers and makes them as a main marketing channel. This kind of marketing generates a numerous transaction and data which are potentially valuable. Using data mining is an alternative to discover frequent patterns and association rules from datasets. In this paper, we use data mining techniques for discovering frequent customers’ buying patterns from a Customer Relationship Management database. There are lots of algorithms for this purpose, such as Apriori and FP-Growth. However, they may not have efficient performance when the data is big, therefore various meta-heuristic methods can be an alternative. In this paper we first excerpt loyal customers by using RFM criterion to face more reliable answers and create relevant dataset. Then association rules are discovered using proposed genetic algorithm. The results showed that our proposed approach is more efficient and have some distinction in compare with other methods mentioned in this research.
کلیدواژه ها:
نویسندگان
Maziyar Grami
Department of Computer, Technical and Engineering College, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Reza Gheibi
Department of Computer, Technical and Engineering College, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Fakhereh Rahimi
Department of Computer, Technical and Engineering College, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :