Network Parameters to Predict the Well Productivity Index

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 617

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CHEMETA01_023

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

For development and evaluation of oil and gas fields, having enough information about hydrocarbon reservoirs is necessary and inevitable, in other words, set various parameters in the evaluation of reservoir rock and fluid is really important in hydrocarbon reservoirs. Reservoir productivity index of the wells can be considered as the most important parameter in determining the economic value of a reservoir. Productivity index of the wells accompanying with certain reservoir parameters play an important role in the evaluation of oil and gas reserves. Therefore, an alternative method for determining the properties of artificial intelligence and machine learning has pointed out the use of tools. The main objective of this study is utilizing a non-linear optimization technique called artificial neural networks to predict reservoir parameters. Data for the various stages of learning and assessment networks are divided into three categories of training, validation, and testing after data processing network 70% of them are placed for education, 15% for validation, and 15% for the MLP experiments. The results show that neural network with two hidden layer simulators do best in terms of simulation.

کلیدواژه ها:

data mining ، artificial neural network ، well testing ، permeability ، porosity and well productivity index

نویسندگان

Mansoor Nikravesh

Mehrarvand International Institute of Technology Abadan, Iran

Mohammadreza Banasaz

Payame Noor University of Abadan Abadan, Iran

Mohammad Dastan

Mehrarvand International Institute of Technology Abadan, Iran

Rashid Bagheri Gale

Mehrarvand International Institute of Technology Abadan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • T Poggio, F Girosi, (1990). Regularization algorithms for learning that ...
  • H Demuth, M Beale, (2000). Neural Network Toolbox User, s ...
  • J Han, M Kamber, (2006). Data mining: concepts and techniques. ...
  • M.B Menhaj, (2003). Principles of Artificial Neural Networks, Amirkabir University ...
  • M Howard, (2006) Neural Network in Electrical Engineering. ...
  • J.H Holland, (1992). Adaptation in Natural and Artificial System, University ...
  • J Kennedy, R Eberhart, (2002). Particle SWarm optimization. In: Neural ...
  • M.R Rezaee, A Kadkhodaie Ilkhchi, P.M Alizadeh, (2008). Intelligent approaches ...
  • نمایش کامل مراجع