پیش بینی رسوب در مخزن به کمک تحلیل های غیرخطی فازی و شبکه عصبی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 556
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
DCEAEM03_090
تاریخ نمایه سازی: 22 آبان 1395
چکیده مقاله:
تقاضای چشم گیر فزاینده برای مصرف آب ناشی از رشد جمعیت از یک سو، و منابع آب محدود از سویی دیگر، کمبود آب را به مسئله ای حیاتی در کشورمان تبدیل می نماید. این امر، به نوبه خود، اثری مخرب بر روی رودخانه ها و جریان های ورودی به مخازن سدها دارد. بنابراین پیش بینی رسوب مخازن برای مدیریت کیفیت آب، تولید برق آبی، سیستم های آبیاری و مدیریت بهره برداری از مخازن سدها ضروری است. در سال های اخیر، به استفاده از روش هایی نظیر هوش مصنوعی جهت مدلسازی پدیده هیدرولوژیکی که دارای پیچیدگی و و شبکه عصبی پرسپترون ( FIS) عدم قطعیت بالایی هستند، توجه زیادی معطوف شده است. در این تحقیق کارایی سیستم استنتاج فاز چند لایه برای پیش بینی میزان رسوب مخزن سد وشمگیر واقع در حوضه آبریز گرگان رود بر اساس داده های روزانه ورودی از دبی جریان اندازه گیری شده در ایستگاه قزاقلی (اولین ایستگاه هیدرومتری واقع در بالادست سد وشمگیر) مورد ارزیابی قرار گرفته است همچنین بمنظور بررسی عملکرد مدل ها، از ضریب همبستگی میانگین مربعات خطا با داشتن میزان دبی جریان به عنوان پارامتر ورودی با دقت قابل قبولی به پیش بینی میزان رسوب بپردازند. همچنین مقایسه نتایج حاصله نشان دهنده کارایی بهتر شبکه عصبی پرسپترون چند لایه در مقابل سیستم استنتاج می باشد.
کلیدواژه ها:
نویسندگان
رضا کیا
دانشجوی کارشناسی ارشد مهندسی عمران- سازه های هیدرولیکی، دانشگاه آزاد اسلامی واحد تهران جنوب
سیامک بوداقپور
استادیار دانشکده عمران دانشگاه صنعتی خواجه نصیرالدین طوسی
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :