A Hybrid of Genetic Algorithm and Gaussian Mixture Model for Features Reduction and Detection of VocalFold Pathology

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 403

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACR-4-2_005

تاریخ نمایه سازی: 16 شهریور 1395

چکیده مقاله:

Acoustic analysis is a proper method in vocal fold pathology diagnosis so that itcan complement and in some cases replace the other invasive, based on direct vocalfold observation, methods. There are different approaches and algorithms for vocalfold pathology diagnosis. These algorithms usually have three stages which areFeature Extraction, Feature Reduction and Classification. In this paper initial studyof feature extraction and feature reduction in the task of vocal fold pathologydiagnosis has been presented. A new type of feature vector, based on wavelet packetdecomposition and Mel-Frequency-Cepstral-Coefficients (MFCCs), is proposed.Also a new GA-based method for feature reduction stage is proposed and comparedwith conventional methods such as Principal Component Analysis (PCA). GaussianMixture Model (GMM) is used as a classifier for evaluating the performance of theproposed method. The results show the priority of the proposed method incomparison with current methods.

کلیدواژه ها:

نویسندگان

Vahid Majidnezhad

The United Institute of Informatics Problems, National Academy of Science, Minsk, Belarus

Igor Kheidorov

The United Institute of Informatics Problems, National Academy of Science, Minsk, Belarus