Compensation of Loudspeaker Nonlinearity Distortion in Acoustic Echo Cancellation Using a New Serial Structurebased Adaptive Combined Neural Network-Finite ImpulseResponse (NN-FIR) Filter
محل انتشار: سومین کنفرانس ملی و اولین کنفرانس بین المللی پژوهش هایی کاربردی در مهندسی برق، مکانیک و مکاترونیک
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 650
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ELEMECHCONF03_0122
تاریخ نمایه سازی: 9 مرداد 1395
چکیده مقاله:
Some applications such as hands-free telephony and video-conferencing still suffer from acoustic echo problem seriously. Because loudspeaker nonlinearity distortion degrades the performance of conventional adaptive Acoustic Echo Canceller (AEC) filters. In this paper, we proposed a novel serial structure-based adaptive combined Neural Network (NN) - Finite Impulse Response (FIR) filter with relatively low computational complexity to challenge with the loudspeaker nonlinearity. This new filter consists of a conventional FIR filter serially with a two-layer Tapped Delay line Neural Network (TDNN) filter, in order to model both the linear portion of the acoustic environment impulse response and to cope with the nonlinear distortion effects of loudspeaker. Back Propagation (BP) and Standard Normalized Least Mean Square (NLMS) algorithms adapt the NN and FIR filters, respectively. Numerical results from computer simulations are presented which prove the excellent performance of the proposed adaptive filter against very high loudspeaker nonlinear distortion for AEC applications.
کلیدواژه ها:
Acoustic echo cancellation ، loudspeaker nonlinearity distortion ، adaptive FIR filter ، taped delay line neural network
نویسندگان
Abolhasan Rezapour Kourandeh
Imam Hosein University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :