Application of Optimized Artificial Neural Networks for Predicting Reservoir Permeability

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 798

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CHCONF02_172

تاریخ نمایه سازی: 9 مرداد 1395

چکیده مقاله:

Permeability is one of the most important properties of reservoirs which indicate fluid flow ability in rock reservoir's pore spaces.Determining permeability in processes such as predicting real reserve, producing and developing oil reservoirs seems essential.In oil industry, the methods of core analyses, well testing and empirical correlations are usually used to measure permeability.The conventional methods of core analyses and well testing are too long and expensive .also, there data are not provided for every well. On the other hand, empirical correlations are used for special cases and are not accurate for every situations.Due to time-related and financial limitation, developing a method for measuring petro physical properties such as: permeability based on well logging data (well logging data almost for every well are provided) could be significant.An Alternative method for evaluating permeability is Artificial Intelligence Machinery learning tools. In this study, the method of data mining has been applied to calculate reservoir permeability by applying petro physical data, At first, the data had been normalized and then horizontal and vertical permeability of an Iranian reservoirs were calculated using geophysics data and the methods of multiple layer Perceptron Neural Network, PSO and GA. Comparison of these methods showed that Combination of MLP with each of PSO or GA has the best result.

نویسندگان

Mansoor Nikravesh

Mehrarvand International Institute of Technology, Abadan

Mohammad Hosein Hoseini

Mehrarvand International Institute of Technology, Abadan

Reza Memarzadeh

Payame Noor University of Abadan

Gholam Hosein Abdollahi Pebdeni

Payame Noor University of Abadan

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G. Thimm, E. Fiesler , High-order and multilayer perceptron initialization, ...
  • H. Yan, Y. Jiang, J. Zheng, C. Peng, Q. Li, ...
  • E. Vanzella, S. Cristiani, A. Fontana, M. Nonino, S. Arnouts, ...
  • U. Orhan, M. Hekim, M. Ozer, EEG signals classification using ...
  • L. Hontoria, J. Aguilera, P. Zufiria, Generation of hourly irradiation ...
  • M. Mozolin, J.-C. Thill, E.L. Usery, Trip distribution forecasting with ...
  • T. Chen, H. Chen, Approximation capability to functions of several ...
  • J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F.J. Fernandez, ...
  • A. Al-Amoudi, L. Zhang, Application of radial basis function networks ...
  • S.A. Billings, _ Fling, Recurrent radial basis function networks for ...
  • M. Rosenblum, Y. Yacoob, L.S. Davis, Human expression recognition from ...
  • S. Chen, S. McLaughlin, B. Mulgrew, C omplex-valued radial basis ...
  • J.B. Gomm, D.L. Yu, Selecting radial basis function network centers ...
  • A.H. El Zooghby, C.G. Christodoulou, M. Georgiopoulos, Performance of radial-bass ...
  • A.G. Parlos, B. Fernandez, A.F. Atiya, J. Muthusami, W.K. Tsai, ...
  • R. Kruse, C. Borgelt, F. Klawon, C. Moewes, M. Steinbrecher, ...
  • G. Jones, P. Willett, R.C. Glen, Molecular recognition of receptor ...
  • S. Hartmann, A competitive genetic algorithm for resource -constrained project ...
  • B. Liu, L. Wang, Y.-H. Jin, F. Tang , D.-X. ...
  • A. Salman, I. Ahmad, S. Al-Madani, Particle Swarm optimization for ...
  • S. Mostaghim, J. Teich, Strategies for finding good local guides ...
  • C.-F .Juang, A hybrid of genetic algorithm and particle Swarm ...
  • N. Higashi, H. Iba, Particle _ optimization with Gaussian mutation, ...
  • نمایش کامل مراجع