ارائه روشی ترکیبی بر مبنای شبکه عصبی فازی و الگوریتم های تکاملی جهت پیش بینی رفتار حین اجرای نرم افزارهای خود تطبیق مبتنی بر معماری
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 762
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
COMPUTER02_076
تاریخ نمایه سازی: 2 تیر 1395
چکیده مقاله:
نرم افزارهای خود تطبیق، سیستم هایی هستند که تغییرات را از محیط درونی و بیرونی خود دریافت کرده و با توجه به وضعیت یک هدر آن قرار دارند، خود را با تغییرات تطبیق می دهند. از آنجا که این فرایند بر اساس نیازمندی های کاربران، منابع و شرایط محیطی صورت می گیرد، منجر به مطابقت نرم افزار با نیازهای کاربران می شود (1 و 2) روش های سنتی خود تطبیقی در قالب ویزگی های زبان های برنامه نویسی به کار می رفتند. تطبیق پذیری که در این روش ها وجود دارد به شدت آمیخته با برنامه است. این روش ها، به محض کشف خطا، آن را به دام می اندازند، اما مدیریت خطای داخلی، قادر نیست منبع واقعی مشکل را شناسایی و راهکار جبرانی ارائه نماید. به علاوه، چنین روش هایی نمی توانند مشکلاتی مانند افت کارایی تدریجی نرم افزار و با الگوهای غیرمطمئن را شناسایی کنند. همچنین به دلیل وابستگی این روش ها به کد برنامه، تغییر سیاست های تطبیق پذیری در آنها، بسیار سخت می شود. راه حل این مشکلات، استفاده از مدل های معماری نرم افزار برای کشف، تشخیص و برطرف کردن خطاها و تنگناهاست. (3) سیستم های خودتطبیق مبتنی بر معماری، واکنشی هستند. مرجع (3) به روش پیش بینی، اتکا دارد و اکنشی نیست. این مرجع، پیش بینی رفتار نرم افزارهای خود تعلیق را با استفاده از مدل مارکوف مخفی و شبکه ی عصبی بازگشتی و پویا (NARX) انجام داده است. شباهت روش ارائه شده در این تحقیق با روشی که در مرجع (3) مطرح شده است، پیش بینی رفتار نرم افزارهای خود تطبیق بر معماری می باشد، اما تفاوت آن عبارت است از استفاده از ترکیب شبکه عصبی فازی انفیس و الگوریتم های تکاملی جهت پیش بینی رفتار نرم افزارهای خود تطبیق مبتنی بر معماری، مدل فازی- عصبی، منطق فازی را با شبکه های عصبی مصنوعی ترکیب می کند. با توجه به وجود روابط غیرخطی و عدم قطعیت در رفتار سیستم های نرم افزاری، استفاده از مدلی که از منطق فازی، استفاده کند در بهبود پیش بینی رفتار این سیستم ها مؤثر است. در مرجع (3) از روش NARX و مدل مارکوف مخفی برای پیش بینی رفتار غیرخطی سیستم های خودتطبیق استفاده شده است. در این تحقیق می خواهیم به بررسی کارایی روش ترکیبی مورد استفاده (ترکیب انفیس و الگوریتم های تکاملی برای پیش بینی بپردازیم.
کلیدواژه ها:
نویسندگان
نادر قانعی رودی
دانشجوی کارشناسی ارشد دانشگاه آزاد اسلامی واحد بیرجند
کاظم نیک فرجام
دانشجوی دکتری دانشگاه آزاد اسلامی واحد قزوین
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :