Development of ANN and SVM models for Prediction of Cell Voltage and Current Efficiency in a Lab Scale Chlor-Alkali Membrane Cell

سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,203

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICHEC05_247

تاریخ نمایه سازی: 7 بهمن 1386

چکیده مقاله:

This paper presents the comparison of artificial neural network (ANN) and Support Vector Machine (SVM) models for the prediction of cell voltage and caustic current efficiency (CCE) versus various operating parameters in a lab scale chlor-alkali membrane cell. In order to validate the model predictions, the effects of various operating parameters on the cell voltage and CCE of the membrane cell were experimentally investigated. Each of six process parameters including anolyte pH (2-5), operating temperature (25-90 o C), electrolyte velocity (1.3-5.9 cm/s), brine concentration (200-300 g/L), current density (1-4 kA/m 2 ), and run time (up to 150 min) were thoroughly studied at four levels for low caustic concentrations (5 g/L). The predictions of ANN & SVM models as well as those from other statistical methods were evaluated against the measured values. It was found that the developed ANN & SVM models are not only capable to predict the voltage and CCE but also to reflect the impacts of process parameters on the same functions. The predicted cell voltages and current efficiencies using these models were found to be close to the measured values with an average deviation of only 1.27% for predicted cell voltages with ANN and 1.98% for CCE with SVM.

نویسندگان

Shojai

Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran ۱۶۸۴۶, Iran

Ashrafizadeh

Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran ۱۶۸۴۶, Iran

Mohammadi

Iran Polymer and Petrochemical Institute, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Linak, E., Schlag, S., and Yokose, K., _ Chlorine/S Odium ...
  • Jalali, A. A., Mohammadi, F., A shrafizadeh, S. N., "The ...
  • Chikhi, M., Rakib, M., Viers, Ph., Laborie, S., Hita, A., ...
  • Schalkoff, R. J., Artificial Neural Networks, Mc Graw-Hill, London, UK ...
  • Vapnik, V. N., Statistical Learning Theory, Wiley, New York, USA ...
  • Vapnik, V., The Nature of Statistical Learning Theory, S pringer-Verlag ...
  • Theodoros, E., Tomaso, P., Massimiliano, P., _ Regularization and Statistical ...
  • Chatterjee, S. N., Chlor-Alkali Membrane Cells and Optimization of Their ...
  • Yeager, H. L., and Malinsky, J. D., Power Consumption of ...
  • Ogata, Y., Uchiyama, S., and Hayashi, M., Study of the ...
  • Chandrand, R. R., Chin, D. T., "Reactor Analysis of Chlor-Alkali ...
  • Pierre, J. St., Wragg, A., "Behavior of Elec trogenerated Hydrogen ...
  • Xiong, Y., Jialing, L., Hong, S., "Bubble Effects On Ion ...
  • نمایش کامل مراجع