Detection of pulmonary nodules on chest CT images with support vector machine classifier
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 554
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CITCONF02_410
تاریخ نمایه سازی: 19 اردیبهشت 1395
چکیده مقاله:
The incidence of lung cancer has been increasing, and it is the leading cause of death among males in the United States, Europe and etc. Due to the low survival rates among lung cancer patients, it is necessary to detect and treat the cancer at an early stage. This paper describes a Computer-Aided Diagnosis (CAD) system for pulmonary nodules detection on serial CT scans based on Support vector machine classification (SVM) scheme. Compared with the simple thresholding approach, the SVM yields a more accurate segmentation of the lungs from the chest volume. to identifying initial nodule candidates within the lungs, the proposed system proves to be effective for initial nodule candidates detection and segmentation, as well as existing approaches. False-positive is reduced by rule-based filtering operations in combination with a feature-based support SVM classifier. The proposed system was validated on 147 patient cases from the publicly available online LIDC (Lung Image Database Consortium) database. Experimental results showed that our CADe system obtained an overall sensitivity of 90% at a specificity of 3.9 FPs/scan. and is improved compared to previous systems.
کلیدواژه ها:
نویسندگان
Hadi Bozorgi
Department of Computer, Islamic Azad University, Ghazvin, Iran
Vahid rostami
Department of Computer, Islamic Azad University, Ghazvin, Iran.
Mohsen salehi
Department of Computer, Imam Reza University, Mashhad, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :