Intelligent Decision Support Systems for Forecasting Crude Oil Price
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 847
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECDC09_031
تاریخ نمایه سازی: 25 بهمن 1394
چکیده مقاله:
This research studies the application of hybrid algorithms for predicting the prices of crude oil. Previous studies mainly use expert systems for predicting oil prices basedon the impact of uncertain events, whereas in this paper, neural networks were used due to their ability to automatically handlenew patterns by updating their learning unlike in expert systems. Brent crude oil price data and hybrid intelligent algorithms (time delay neural network, probabilistic neural network, and fuzzy logic) were used to build intelligent decision support systems for predicting crude oil prices. The proposedmodel was able to predict future crude oil prices from August 2013 to July 2014. Future prices can guide decision makers in economic planning and taking effective measures to tackle the negative impact of crude oil price volatility. Energy demand and supply projection can effectively be tackled with accurate forecasts of crude oil prices, which in turn can create stability in the oil market. The future crude oil prices predict by theintelligent decision support systems can be used by both government and international organizations related to crude oil such as organization of petroleum exporting countries (OPEC) for policy formulation in the next one year.
کلیدواژه ها:
decision support system ، time delay neural network ، probabilistic neural network ، fuzzy logic ، crude oil prices
نویسندگان
Haruna Chiroma
Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
Adeleh Asemi Zavareh
Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
Mohd Sapiyan Baba
Faculty of Computer Science, Gulf University of Science and Technology, Kuwait
Adamu I. Abubakar
Faculty of Information and Communication Technology, International Islamic University Kuala Lumpur, Malaysia.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :