A New Approach to Classification of Malware Detection System
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 855
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
TEDECE01_107
تاریخ نمایه سازی: 30 آبان 1394
چکیده مقاله:
Since the appearance of the first virus detection system based on data mining proposed by Schultz in 2001, several studies have shown the effectiveness of data mining techniques in the fight against computer viruses. These systems, based on data mining, exploit available data on the previous attacks to achieve a smarter detection method. The majority of these systems is based on supervised learning. This limits their adaptations in dynamic environments (computer viruses environment) because they are not progressive after the training phase. In addition, the training of a model requires a large number of programs labeled as learning base. In this paper, we propose a virus detection system based on an evolutionary process of data mining where we will be able to optimize the number of examples for training while reducing the cost of labeling. A considerable improvement is made in the computer virus detection process through our system based on a new active and incremental learning architecture
کلیدواژه ها:
نویسندگان
Mohammad Reza Ghasemi
Jahad Daneshgahi Shiraz, Iran