یادگیری تقویتی روبات مسیریاب با استفاده از روش یادگیری کیو عصبی
محل انتشار: ششمین کنفرانس مهندسی برق و الکترونیک ایران
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 1,341
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEEE06_175
تاریخ نمایه سازی: 1 مهر 1394
چکیده مقاله:
ربات مسیریاب یک محک خوب برای مسائل هوش مصنوعی و رباتیک است. تصمیم گیری یکی از مهمترین بخش های ربات های مسیریاب است. در محیط هایی با دینامیک های پیچیده یکی از روش های یادگیری تقویتی که در فرایندهای تصمیم گیری مورد استفاده قرار می گیرد Neural q_learning است. در این مقاله روش مورد نظر را با دو روش Value iteration و Q learning که دو تا از مرسوم ترین روش های یادگیری تقویتی هستند مقایسه کرده و با توجه به نتایج بدست آمده کارآمد بودن روش Neural q_learning در مقایسه با دو روش دیگر به نمایش درخواهد آمد.
کلیدواژه ها:
نویسندگان
جواد صادق آبکوه
دانشگاه شهید باهنر کرمان
سیدمحمدعلی محمدی
دانشگاه شهید باهنر کرمان
مجتبی برخورداری
دانشگاه شهید باهنر کرمان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :