مانیتورینگ ارتعاشات و تشخص هوشمند خطا در بیرینگ ها با استفاده از کلاسیفایر Multi Class SVM به همراه معرفی ویژگی های تأثیر گذار سیگنال ارتعاش
محل انتشار: هفتمین کنفرانس نیروگاه های برق
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 818
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EPGC07_123
تاریخ نمایه سازی: 19 تیر 1394
چکیده مقاله:
طراحی های نوین صنعتی با هدف افزایش سرعت و سطح تولیدات، موجب گسترش استفاده از بیرینگها در صنایع گردید. از سوی دیگر با استفاده بیشتر از بیرینگها، بزرگترین جالش فنی پیش رو شناسایی عیوب این قطعات پیش از آسیب های جدی می باشد. در این مقاله با طراحی یک سیستم مبتنی بر کلاسیفایر ماشین بردار پشتیبان چند کلاسه (Multi Class SVM) ضمن شناسایی به موقع عیوب ایجاد شده در بیرینگها، در صورت امکان نوع آن نیز مشخص گردد. با انتخاب روش Signal base به عنوان یکی از روش های بررسی شرایط کاری و طرح سئوال اصلی چگونگی تشخیص خطای بیرینگها بصورت هوشمند، 280 نمونه سیگنال ارتعاش از 4 وضعیت بیرینگ در ازمایشگاه استخراج شد و سپس ویژگی های مختلف این سیگنال ها مورد تجزیه و تحلیل قرار گرفت. نتایج حاصل نشان دهنده توانایی کلاسیفایر انتخاب شده و تأثیر ویزگی های انتخابی در تشخیص هوشمند خطای بیرینگ ها می باشد.
کلیدواژه ها:
نویسندگان
امین کرمی
نیروگاه اتمی بوشهر
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :