MLP Neural Network Modeling of PEG – Dextran, Polymer –Polymer Aqueous Two-Phase Systems
محل انتشار: پانزدهمین کنگره ملی مهندسی شیمی ایران
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 854
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICHEC15_044
تاریخ نمایه سازی: 19 تیر 1394
چکیده مقاله:
Aqueous two-phase systems (ATPSs) are formed because of the mutual incompatibility of two hydrophilic polymers or a polymer and a salt which are increasingly being applied in extractive separation and purification of macromolecules, particles and biological materials which are fragileand susceptible to denaturation if undergone classical separation processes. This advantageous feature could mainly be attributed to the low surface tension between the two liquid phases and also the generally benign environment of the system. The deployment of ATPSs is especiallypromising in overcoming low product yield in conventional fermentation processes. In this study an artificial intelligence model based on a feedforward back-propagation neural network was employed to predict the partition coefficients of the two polymers comprising ATPSs of PEG –Dextran of varying molecular weights as one of the most common aqueous two-phase system currently employed. These partition coefficients are essential in proper engineering of extractive separation of biomolecules. The results indicate the applicability of the neural network model as areliable technique for the optimization of extraction conditions
کلیدواژه ها:
نویسندگان
Aliakbar Roosta
Chemical Engineering, Oil and Gas Department, Shiraz University of Technology, Shiraz, Iran
Javad Hekayati
Chemical Engineering, Oil and Gas Department, Shiraz University of Technology, Shiraz, Iran
Jafar Javanmardi
Chemical Engineering, Oil and Gas Department, Shiraz University of Technology, Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :