Bidirectional Neural Network for Pathological Voice Detection

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 750

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICBME20_095

تاریخ نمایه سازی: 25 فروردین 1394

چکیده مقاله:

We showed in our recent work that Bidirectional neural network (BNN) is a powerful tool for feature compensation in automatic speech recognition systems. In thispaper, we have introduced BNN as feature compensator for better discriminating of pathological voices from normal subjects. Mel-Frequency Cepstral Coefficients (MFCCs) wereextracted from each frame of sample voices and were compensated in two steps. First, BNN is trained with both normaland pathological feature vectors. Our hypothesis is that BNN can extract useful knowledge about the patterns of each class duringtraining step. In second step, MFCC feature vectors feed into BNN and compensate according to latent knowledge of BNN. In the last step , Compensated MFCCs are classified as pathological or normal by HMMs. We achieved 4.67%, 2.81% and 2.24% improvement in measures of specificity, accuracy and sensitivityby compensated feature vectors compared to the original feature vectors. Results corroborated our hypothesis about the ability ofBNN in compensation of feature vectors in a way that these features become more suitable for detection of pathological voices from normal ones.

نویسندگان

Iman Esmaili

Biomedical Engineering Department Science & Research Branch, Islamic Azad University Tehran, Iran

Nader Jafarnia Dabanloo

Biomedical Engineering Department Science & Research Branch, Islamic Azad University Tehran, Iran

keyvan Maghooli

Biomedical Engineering Department Science & Research Branch, Islamic Azad University Tehran, Iran