Segmenting Online Customers Based on their Lifetime Value and RFM Modelby Data Mining Techniques
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,065
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECDC08_022
تاریخ نمایه سازی: 6 آذر 1393
چکیده مقاله:
Nowadays, marketing managers are more concerned with identifying and understanding customer behavior in the online space. Since the customers in online space are not visible, it is much essential to have more information about them to provide better services. Customer segmentation is one way to improve the customer problems in an online space. Identifying characteristics of customers and optimal resource allocation to them according to their value to the company is one of the major concerns in the field of customer relationship management and determining factors in E-business success. The purpose of this study is clustering customers online of a mobile sales website based on their lifetime value and RFM model. At the proposed framework in this study after determining the values of RFM model include recently, frequency and monetary of purchase and weighting them using Shannon entropy, a selforganizing map is applied to the segmentation of customers. The customers are categorized into four main segments and characteristics of customers online in each of the segments are identified. Mobile sales website customers are identified by segmenting customers in terms ofthe pyramid of customer lifetime value. Finally, suggestions are proposed to improve customer relationship management system
کلیدواژه ها:
نویسندگان
Azarnoosh AnsariPhD
Assistant Professor of Management Department,University of IsfahanIsfahan, Iran
Shermineh Ghalamkari
PhD. Student of Management, University ofIsfahan
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :