Effectiveness Comparison of Neuro-Fuzzy and Neural Network methods Artificial in Estimation of Suspended Load Hazard of Rivers(Case Study: Taleghan Basin)

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 539

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEHH02_516

تاریخ نمایه سازی: 13 آبان 1393

چکیده مقاله:

Lots of discharge sediment of cross-cutting are formed Suspended load in many rivers. Sediment delivery and transition load by river flow make many problems for under stream that are included: sedimentation in reserve dam and decrease of impressive volume dams, variation of river direction due to sedimentation in Bed River, decrease of transit capacity of channels and powerhouse transition, variation of quality water from potable and agriculture. Estimation of suspended load is one of important problems for design of reserves, transition volume of sediment, and estimation lakes pollution. In other hand are required for determinate of damages due to sedimentations in environment and determined effecting on the watersheds. There are many methods for estimating load suspended, one of this methods that solved different problems of discharge sediment in flow and can be predict it, used of Nero fuzzy or ANFIS (Adaptive Network Fuzzy Inference System) method, and NNA (Artificial Neural Network) method. These can be related a function between sediment and simultaneous discharge by used of MATLAB and Nero Solution Software's and modeling relations from among variants. The goal of this research is comparison effectiveness Nero fuzzy, neural network artificial and statistical methods for estimating suspended load river in Glinak station of Taleghan Basin. Results this research showed that estimations from Nero fuzzy method by MAE 1006 ton/day, and correlation efficiency (R) 77% and RMSE 2621 ton/day more than Neural Network Artificial are significantly. In contract, fuzzy laws can be illustrated better than methods of neural networks artificial, variation of rivers sediment load. Other profit this method hasn't sensitively to existence some errors in early data. Also are showed that imputed Nero fuzzy method proper reply by increasing train data rather than test data.

نویسندگان

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • ZhangوG .P. _ 2003. Time serries forecasting using a hybrid ...
  • Agrowal, A., R.D. Singh, S.K. Mishra, P.K. Bhung, 2004, ANN-based ...
  • Box, G.E.P., and Jenkins, G.M. (1976) Time Series Analysis Forecasting ...
  • Coulibaly P., Hache M., Fortin V., and Bobee B. (2005), ...
  • Demuth, H.and Beale, m., 1 998.Neural Network Toolbox For Use ...
  • El-Shafie, A:, Reda Taha, M , Noureldin, A. , 2007. ...
  • Firat , M., and G ung or, M. , 2007. ...
  • Hipel.K.W. , and Mcleod.A.L, 1 994. Stochastic and Statistical Methods ...
  • Hsu , K.Gupta H.V. and Sorooshian, S., 1995. Artificial neural ...
  • Huang, w. _ _ iton, b.x.2004. Forecasting flows in Apalachicola ...
  • Jang , J.S.R., (1993) ANFIS: Ada ptive-n etwork-based fuzzy inference ...
  • Jain, S.K., Das, A. and Srivastava, D.K. (1999), Application of ...
  • Jain, A. and Kumar, A.M., 2007. H7brid neural network models ...
  • Kerem, H., 2002a, Suspended sediment estimation and forecasting using artificial ...
  • Kerem, H., 2002b, Suspended sediment estimation for river using artificial ...
  • Kerem, H., 2006a, generalized regression neural network in modeling river ...
  • Kerem, H., 2006b, Methods to improve the neural network performance ...
  • Kisi, O., 2004. River Flow Modeling Using Artificial Neural Networks. ...
  • Kisi.O. , Karahan.M. E., and Sen .Z.2006. River suspended sediment ...
  • Kisi, O., and Ozturk, O.2006. Forcasting river flows and estimating ...
  • Kottegoda, N. T., 1980 .Stochastic Water Resources Technolodv. Technology _ ...
  • Luis Aznarte M. _ Manuel Ben tez Sa nchez , ...
  • concentration time series with neural and neuro-fuzzy models. Expert Systems ...
  • Memarian Khalilabad, H., S. Zakikhani, S. Feiznia, 2006, River suspended ...
  • Mendez Maria, C., Wenceslao, G _ ManuelP, F., Jose Manuel ...
  • Murat, A., H.K. Cigizoglu, 2007, Suspended sediment load simulation by ...
  • Swain, P. C. , 2005. Streamflow Forecasting Using Nuero-Fuzzy _ ...
  • Nauck, D., 1 997. Neuro-fuzzy systems: review and prospects. PROC.Fifth ...
  • Nauck, D., and Kruse.R.L, 1 998. A Neuro-fuzzy Approach to ...
  • Nayak, P.C., Sudheer, K.P., Rangan, D.M., Ramasastri, K.S., 2004. A ...
  • Nu-rn berger, A. .Nauck, d.and Kruse, R.1999 .Neuro-fuzzy control based ...
  • Salas, J. D., Delleur, J. W., Yevjevich, V., & Lane, ...
  • Salas, J.D., "Analysis and Modeling of Hydrologic time Series". Chapter ...
  • Sarangi, A., A.K. Bhattacharya, 2005, Comparison of artificial neural network ...
  • N E FCO N-model .recent Verlag1999). ...
  • Sarangi, A., C.A. M adramootoo, P. Enright, S.O. Prasher and ...
  • Schildt.G., 1 998.A Distributed User Adaptive Neuro-fuzzy controller Application for ...
  • Yurekli, K. , Kurunc, A, A. _ _ Simsek, H. ...
  • Yurekli, K..Kurunc, A. _ &Ozturk, F., 2005. Application of linear ...
  • Wang , W., Gelder .P., & Vrjling. J .K, .2005. ...
  • Zhang, B., R. Govindaraja, 2003, G eo morphology based artificial ...
  • Zhu, Y., X.X. Lu and Y. zhou, suspended sediment flu ...
  • Wang, W, .2006 .stochasticity, ...
  • نمایش کامل مراجع