Artificial Neural Network Simulator for Prediction of Compressive Strength in Geopolymer Composites

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,186

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCAU01_2994

تاریخ نمایه سازی: 29 تیر 1393

چکیده مقاله:

Geopolymers are highly complex materials which involve many variables which makes modeling its properties very difficult. There is no systematic approach in mix design for Geopolymers. Since the amounts of silica modulus, Na2O content, w/b ratios and curing time have a great influence on the compressive strength an ANN (Artificial Neural Network) method has been established for predicting compressive strength of ground pumice based Geopolymers and the possibilities of adapting ANN and artificial intelligence system for predicting the compressive strength has been studied. Consequently a multilayer ANN by using back propagation architecture can be used for geopolymer compressive strength prediction with acceptable accuracy.

کلیدواژه ها:

نویسندگان

Mehrzad Mohabbi Yadollahi

Department of Civil Engineering, Atatürk University, ۲۵۲۴۰, Erzurum, Turkey

Ramazan Demirboğa

Engineering Faculty, Civil Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia

Rüstem Gül

Department of Civil Engineering, Atatürk University, ۲۵۲۴۰, Erzurum, Turkey

Alireza Motamadnia

Department of Civil Engineering, Azarshar branch, Islamic Azad University, Tabriz, Iran