ANFIS Networks Design using Hybrid Gentic and SVD Methods for Modelling of Rubbdr Engine Mount Stiffness
محل انتشار: سیزدهمین کنفرانس سالانه مهندسی مکانیک
سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,363
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISME13_548
تاریخ نمایه سازی: 21 اسفند 1385
چکیده مقاله:
Genetic Algorithm (GA) and Singular Value Decomposition (SVD) are deployed for optimal design of both Gaussian membership functions of antecedents and vector of linear coefficients of consequents, respectively, of ANFIS networks which are used for modelling of stiffness of rubber engine mount. The aim of such modelling is to show how the stiffness of an engine mount varies with the variation of geometric parameters. It is demonstrated that SVD can be effectively used to optimally find the vector of linear coefficients of conclusion parts in ANFIS (Adaptive Neuro-Fuzzy Inference Systems) models whilst their Gaussian membership functions in premise parts are determined by GA. In this way, the stiffness training data are obtained for 36 different bush type engine mounts by using the finite element analysis (FEA).
کلیدواژه ها:
نویسندگان
Nariman zadeh
Associate Professor Department of Mechanical Engineering, Engineering Faculty, Guilan University
Marzbanrad
Assistance Professor, Department of Automotive Engineering, Iran University of Science & Technology
Jamali
Graduate Student Department of Mechanical Engineering, Engineering Faculty, Guilan University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :