مقایسه مدل های عددی در پیش بینی راندمان وزنی آهن مطالعه موردی مدار فلوتاسیون خط DTP مجتمع گل گهر
محل انتشار: دومین همایش علمی مهندسی فرآیند پالایش و پتروشیمی
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 587
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PROCESS02_117
تاریخ نمایه سازی: 7 تیر 1393
چکیده مقاله:
هدف در سیستم های فلوتاسیون، کنترل عیار و بازیابی محصول است. برای نیل به این هدف از روش های مختلف عددی و یا نمونه گیری و آنالیز استفاده می شود. ضعف تجهیزات اندازه گیری، کمبود دانش فرآیند و نقص در مدیریت و پردازش داده ها در کنترل سلول های فلوتاسیون، واحد های دانشگاهی و صنعتی را به سمت استفاده از روش های عددی سوق داده است. در همین راستا، به کمک نتایج به دست آمده از طرح آزمایشی انجام شده در خط DTP مجتمع صنعتی و معدنی گل گهر، مدلی رگرسیونی بر مبنای تحلیل واریانس ارائه شد. برای ارائه صحیح این مدل پس از تحلیل واریانس عوامل و تأثیرات متقابل، انواع مدل ها بررسی شد و مدل نهایی بر اساس 75% داده ها ایجاد شد. به منظور بررسی مفید بودن مدل، مدل با 25% باقی داده ها مورد آزمایش قرار گرفت. ضریب قطعیت مدل که به عنوان متغیر کنترلی مفید بودن مدل در نظر گرفته شده بود در مراحل آموزش و آزمایش به ترتیب 74% و 71% به دست آمد. در ادامه نتایج در مدل پس انتشار خطا از مجموعه شبکه عصبی قرار گرفته و از مدلهای با تعداد لایه و نرون های مختلف استفاده شد. بهترین نتایج مربوط به مدل 1-27-6 بود که ضرایب قطعیت 99% و 98% را به تربیت برای آموزش و آزمایش مدل به دست داد. با توجه به پیچدگی مدل های شبکه عصبی و دقت نسبتا پایین مدل رگرسیونی در صورت دسترسی به متخصص استفاده از شبکه عصبی اولویت دارد. ضمنا آنکه می توان از نتایج مدل حاصل از شبکه عصبی به عنوان سیستم های ماهر برای کنترل و بهینه سازی سلولهای فلوتاسیون استفاده کرد.
کلیدواژه ها:
نویسندگان
امین سراوری
دانشجوی کارشناسی ارشد فرآوری مواد معدنی دانشگاه شهید باهنر کرمان، پژوهشگر پژوهشکده سنگ آهن و فولاد گلگهر
عباس سام
دکترای فرآوری مواد معدنی، دانشیار بخش معدن دانشگاه شهید باهنر کرمان، رئیس پژوهشکده سنگ آهن و فولاد گلگهر
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :