ارزیابی کارایی مدل شبکه عصبی مصنوعی در شبیه سازی فرآیند بارش_رواناب (مطالعه موردی:حوزه آبخیز بالخلوچای)
محل انتشار: اولین همایش سراسری کشاورزی و منابع طبیعی پایدار
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 585
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NACONF01_1107
تاریخ نمایه سازی: 25 خرداد 1393
چکیده مقاله:
فرآیند بارش- رواناب مهمترین فرآیند هیدرولوژیکی تأثیرگذار بر منابع آب در دسترس بشر است. مطالعه این فرآیند نقطه شروع یک مدیریت صحیح و در راستای توسعه پایدار است. مدلها و روابط مختلفی جهت این مطالعه ارائه شده است که مدل شبکه عصبی مصنوعی به دلیل توانایی بالا در تجزیه و تحلیل سیستمهای پیچیده و غیرخطی مانند فرآیند بارش- رواناب کاربرد گستردهای در علوم مرتبط با آب دارد. از این رو در این تحقیق کارایی شبکه عصبی مصنوعی پرسپترون چند لایه که عمدتا در شبیهسازی بارش- رواناب به کار برده میشود، جهت شبیهسازی بارش- رواناب و تخمین پارامتر دبی ماهانه حوزه آبخیز بالخلوچای و با استفاده از عوامل اقلیمی شامل بارندگی و تبخیر، مورد استفاده قرار گرفت. نکته قابل توجه در شبکه عصبی مصنوعی ساختار شبکه است که تعداد و آرایش لایهها و نرونها را مشخص میکند. در نهایت از بین ساختارهای مختلف طراحی شده و باتوجه به ضرایب کارایی مدل شامل ضریب همبستگی، میانگین مربعات خطا، میانگین مربعات خطای نرمال شده و میانگین مطلق خطا (به ترتیب برابر با 923/.، 0145/.، 276/. و 103/.)، شبکه عصبی مصنوعی پرسپترون چند لایه با تعداد 3 لایه مخفی و 3 نرون در هر لایه مخفی، الگوریتم مومنتم و تابع محرک تانژانت هایپربولیک که توانست دبی ماهانه مربوط به دوره 24 ماهه تست را با دقت قابل قبولی شبیهسازی کند، به عنوان دقیقترین مدل و ساختار انتخاب شد.
کلیدواژه ها:
نویسندگان
رسول ایمانی
دانشجوی کارشناسی ارشد دانشکده منابع طبیعی و علوم زمین،دانشگاه کاشان
علی آلبوعلی
دانشجوی کارشناسی ارشد دانشکده منابع طبیعی و علوم زمین،دانشگاه کاشان
هدی قاسمیه
استادیار دانشکده منابع طبیعی و علوم زمین،دانشگاه کاشان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :