EOG artifact removal from EEG using a RBF neural network
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 958
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EOESD01_233
تاریخ نمایه سازی: 11 خرداد 1393
چکیده مقاله:
In this paper, a new adaptive radial-basis function- networks- (RBFN-) based filter for theadaptive noise cancellation (ANC) problem is proposed. The algorithm of structure identificationand parameters adjustment is developed. The proposed RBFN-based filtering approachimplements Takagi-Sugeno-Kang (TSK) fuzzy systems functionally. The RBFN-based filter hasthree major features: (1) No space pre partitioning is needed; (2) No predetermination, such asthe number of RBF neurons (fuzzy rules), must be given; (3) Fast learning speed is achieved.Simulation results demonstrate that the proposed adaptive RBFN-based filter can cancel thenoise successfully and efficiently with a parsimonious structure.
کلیدواژه ها:
نویسندگان
Ali akbar kargaran erdechi
MS students, University of hakim Sabzevari, Sabzevar, Iran
Ahmad haji pour
Faculty of Electrical and Computer Engineering, University of hakim sabzevari