Dust Level Forecasting and its Interaction with Gaseous Pollutants Using Artificial Neural Network: A Case Study for Kermanshah, Iran
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1,013
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJEE-5-1_008
تاریخ نمایه سازی: 1 اردیبهشت 1393
چکیده مقاله:
An artificial neural network (ANN) was used to forecast natural airborne dust as well as five gaseous air pollutants concentration by using a combination of daily mean meteorological measurements and duststorm occurrence at a regulatory monitoring site in Kermanshah, Iran for the period of 2007-2011. We used localmeteorological measurementsand air quality data collected from three previous days as independent variablesand the daily pollutants records as the dependent variables (response). Neural networks could be used todevelop rapid air quality warning systems based on a network of automated monitoring stations. Robustnessof constructed ANN acknowledged and the effects of variation of input parameters were investigated. As a result, dust had a decreasing impact on the gaseous pollutants level. The prediction tests showed that theANN models used in this study have the high potential of forecasting dust storm occurrence in the regionstudied by using conventional meteorological variables.
کلیدواژه ها:
Artificial neural network Dust Gaseous pollutants Forecasting model
نویسندگان
a.a Zinatizadeh
Department of Applied Chemistry,Faculty of Chemistry, Razi University, Kermanshah, Iran
m Pirsaheb
Health Research Center (KHRC), Kermanshah University of Medical Science, Iran
a.r Kurdian
Faculty of Chemical Engineering,Sahand University of technology, Sahand New Town, East Azerbaijan, Iran
s Zinadini
Department of Applied Chemistry,Faculty of Chemistry, Razi University, Kermanshah, Iran