A new efficient particle swarm optimization algorithm for money laundering detection in insurance company
محل انتشار: دومین کنفرانس ملی مهندسی صنایع و سیستم ها
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,103
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NIESC02_074
تاریخ نمایه سازی: 27 اردیبهشت 1393
چکیده مقاله:
Money laundering is a complex and dynamic process, which conceals the sources of money.Insurance companies are faced with the challenge of money laundering. It encounters insurancecompanies to legal, operational and reputational risks. Previous studies in insurance investigate the fraudin insurance, whereas money laundering as a crucial phenomenon in insurance is neglected; therefore, we explore for the first time the money laundering in insurance and proposed an efficient statistical method to detect it. In this paper, we propose a useful strategy namely stratified sampling, which distributed allsamples to different strata subject to minimizing the variance of overall amount of money laundered dueto money laundering activities. To solve this objective function we develop an efficient particle swarm optimization (PSO) which is combined with the neighborhood search (NS) algorithm. Then for anumerical example, we run this metaheuristic algorithm and compare the results respect to objectivevalue and CPU time with genetic algorithm and traditional PSO approach. These comparisons imply that PSO algorithm, which is combined with NS, performs better than other methods for this problem; also, results show that the near optimum number of strata is 600. In other word, we divide the insured into 600 groups and survey these samples instead of survey all insured
کلیدواژه ها:
money laundering ، insurance industry ، stratified sampling ، genetic algorithm ، particle swarm optimization algorithm ، hybrid particle swarm optimization/neighborhood search
نویسندگان
Somayeh molaei
M.Sc. student, Department of Industrial Engineering, Amirkabir University of Technology,
pejman mehran
Assistant Professor, Department of Industrial Engineering, Amirkabir University of Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :