F azzy Wavelet coeffi cients Discriminator For ECG Arrhvthmia Detection In Two Leads

سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,306

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE15_021

تاریخ نمایه سازی: 17 بهمن 1385

چکیده مقاله:

Automatic classification of cardiac arrhythmia is a challenging area in the field of heart abnormality detection. Conventional methods used to classify arrhythmia use feature based inforntation related lo ECG signal. In this paper a novel methocl is introduced, to extract specific ntedical idormation using ECG data from leads containing this information for each arrhythmia. We have shown that using L'l in addition to VII improves the results of classification In fact, in data obtained from L'l special patterns appear which deal with Lefi Bundle Branch Block Beat (LBBB) and Right Bundle Branch Block Beat (RBBB), and this information helps medical doctors to detect arrhythmia. Adding this feature to the classification algorithm increases the accuracy while resztlting in less complex classifiers. After including the dala of the leads with accurate infonnation about each anhythmia, we reduced exlrentely the number of inputs wing a Fuzzy set-based feature extraction method. Ilavelet coefficients of the ECG signal were fed into a simple preceptron neural network consisting of one hidden layer as input Since specifc leads were used high accuracy was achieved despite the reduced number of inputs and the simplicity of the network In the present work the ECC data is taken from standard MIT-BIT Arrhythmia database

کلیدواژه ها:

نویسندگان

Payam Bahman-Bijari

Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, lran , School of Cognitive Sciences, Institute for Studies in Theoreticat Physics and Nlathematics (IPNI), Tehran, Iran

Alireza Akhoundi-Asl

Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, lran , School of Cognitive Sciences, Institute for Studies in Theoreticat Physics and Nlathematics (IPNI), Tehran, Iran

Ali Jalali

Faculty of Mechanical Engineering, Khaje Nasir Toosi University of Technology.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Usingث [14] L. Y. Shyu, Y. HH. Wu, and _ ...
  • R. Jafari, H. Noshadi, S. Ghiasi and M. Sarrafzadeh, «Adaptive ...
  • P. S. Addison, ، Wavelet transforms and the ECG: a ...
  • A. Langer, M. S. Heilman, and M. M. Mower ، ...
  • S. Chen, N. V. Thakor, and M. M. Mower ، ...
  • Detecting؛ [5] V. X. Afonso, and W. J. Tompkins Ventricular ...
  • L. Sornmo, P. O. Borjesson, _ E. Nygards, and O. ...
  • _ A. Coast, R. M. Sterm, G. G. Cano, and ...
  • B. Q. Celler and P. _ Chazal, ،Low computational _ ...
  • Proc. Iht. Conf. qy Convergent Technologies for Asia-Pacific Region. Vol. ...
  • C.S. Burrus, R.A. Gopinath and H. Guo, Introduc tion to ...
  • J. S. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. ...
  • [[8] D. Li, 7. Pedrycs, N.J.Pizzi, *Fuzzy Vavelet Based Feature ...
  • ، Heart Disease، Baunwald، 7" edition, W B Saunders Co.. ...
  • diagnosis using neural networks, in Proc Anxu Iht. Cong. IEEE ...
  • S. Osowski, and T. H. Linh, ،ECG beat recognition using ...
  • P. S. Addison, J. N. Watson, G. R. Clegg, M. ...
  • A. Rakotom amonjy _ D. Coast, and P. marche, ، ...
  • نمایش کامل مراجع