CHAOTIC RESPONSE AND BIFURCATION ANALYSIS OF A TIMOSHENKO BEAM WITH BACKLASH SUPPORT SUBJECTED TO MOVING MASSES

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,029

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NCMII01_046

تاریخ نمایه سازی: 22 اردیبهشت 1393

چکیده مقاله:

. A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in this study are the dynamic trajectories of the beam midpoint, power spectra, Poincare´ maps, bifurcation diagrams and Lyapunov exponents. The dimensionless backlash gap coefficient and the moving mass speed are used as control parameters. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, and chaotic behaviors. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, and Lyapunov exponents of the system. Therefore, the main aim of this study is to provide a better understanding of the characteristics and dynamic behaviors of the beams subjected to moving masses

نویسندگان

a Ariaei

Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Hezar Jerib Ave., Isfahan, Iran

m Kouchaki

Department of Mechanical Engineering, University of Isfahan, Hezar Jerib Ave., Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Stokes, G.G. (1849): Discussion of a differential equation relating to ...
  • Willis, R. (1949). Report of the Commis sioners Appointed to ...
  • Chen, Y. (1999): Distribution of vehicular loads on bridge girders ...
  • Wu, TX.. Thompson, DJ. (1999): The effects of local preloads ...
  • Todd, MD..Vohra, ST. (1999): Shear deformation correction to transverse shape ...
  • Akin, J.E., Mofid, M. (1989) : Analytical numerical solution for ...
  • Mofid, M., Akin, JE. (1996): Di screteelemen response of beams ...
  • Mofid, M, Shadnam, M. _ On the response of beams ...
  • Yavari, A., Nouri, M., Mofid, M. (2000): Discrete element analysis ...
  • Ziaei-Rad, S., Ariaei, A., Imregun, M. (2007): Vibration Analysis of ...
  • HenrykMerta, (2006): Characteristic time series and operation region of the ...
  • Tomasz Stachowiak, Toshio Okada, (2006): A numerical analysis of chaos ...
  • S unitaGakkhar, Brahampal Singh, (2005): Complex dynamic behavior in a ...
  • Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R. (2004): The ...
  • Zhang, J.-G, J.-N Yu, Y.-D Chu, Y.-X Chang and X.-F ...
  • Ge, Z.M.. Lee, J.K. (2005): Chaos Sy nchronization and parameter ...
  • Mahamoud, G.M., Mohamed, A.A., Aly, S.A. (2001): Strange attractors and ...
  • Li-Qun Chen, Yan-Zhu Liu, (2001): A modified exact linearization control ...
  • Ge, Z.M., Leu, W.Y. (2004): Anti-control of chaos of two ...
  • Fryba, L. (1999): Vibration of Solids and Structures under Moving ...
  • SunitaGakkha. Brahampal Singh, (2006): Dynamics of modified Le slie-Gower- type ...
  • -[22] Hsien-Keng Chen, Zheng-Ming Ge, (2005): Bifurcations and chaos of ...
  • Ge, Z.-M., Chen, Y.-S, (2005) : Adaptive S ynchronization of ...
  • Pakdemirli, M. H., Boyaci, M. (2002): Effect of non-ideal boundary ...
  • Pakdemirli, M., Boyaci, H. (2001): Vibrations of a stretched beam ...
  • Pakdemirli, M, Boyaci, H. (2003): Non-linear vibrations of a simple-simple ...
  • Lin, R. M., Ewins, D. J. (1993): Chaotic vibration of ...
  • Lin, HP. (2004): Direct and inverse methods On free vibration ...
  • Shames, IH., Dym, CL.. (1985): Energy and Finite Element Methods ...
  • Bilello, C.., Bergman, L.A. (2004): Vibration of damaged beams under ...
  • Lin, HP.. Chang, SC. (2006): Forced responses of cracked cantilever ...
  • Dadfarnia, M., Jalili, N., Esmailzadeh, E. (2005): A comparative study ...
  • Mahmoud, MA., Zaid, MA. (2002): Dynamic response of a beam ...
  • Khanlo, H.M., Ghayour, M., Ziaei-Rad, S. (2011): Chaotic vibration analysis ...
  • Nayfeh, A. H. (1979): Nonlinear Oscillation, Wiley, New York, United ...
  • Moon, F.C. (2004): Chaotic Vibration: An Introduction for Applied Scientists ...
  • نمایش کامل مراجع