Investigating the Robustness of Long Short-Term Memory Deep Neural Networks for Tumor Motion Tracking at External Surrogates Radiotherapy
محل انتشار: مجله فیزیک پزشکی ایران، دوره: 22، شماره: 5
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-22-5_008
تاریخ نمایه سازی: 7 دی 1404
چکیده مقاله:
Introduction: At radiotherapy, tumor motion is clinically tracked in real-time using external surrogates. To achieve this. A reliable correlation model is used to predict tumor coordinates based on the motion of external markers. In this work, a deep neural networks model is introduced for tumor motion tracking. Material and Methods: A motion database of ۲۰ patients treated with the CyberKnife Synchrony System has been used to train and evaluate the model. The proposed model is based on Long-Short Term Memory neural network developed in a Python software package. The network consists of two layers, each with ۴۰ neurons, and a fully connected layer with a linear activation function. Results: In this study, three-dimensional RMSE which is a common approach for calculating the model error is utilized. The obtained ۳D RMSE of the proposed model is compared with the performance accuracy of the CyberKnife modeler. The results show a significant ۱۵.۳% reduction in three-dimensional error, indicating that our developed model has a lower error compared to the CyberKnife modeler. Conclusion: In this study, a model based on deep Long-Short Term Memory neural network is used for tumor tracking using a motion database of real patients. The reason for using this model is its robustness to remember information for a long period and its high predictive ability, which makes it promising for future clinical implementation. Unlike previously used models, this model can retain useful information from past time series and use it for training, allowing the model to outperform other models.
کلیدواژه ها:
Radiotherapy Tumor Motion Model Long Short ، Term Memory
نویسندگان
Mohadeseh Torabi
Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
Ahmad Esmaili Torshabi
Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
Esmat Rashedi
Department of Electrical Engineering, Graduate University of Advanced Technology, P.O. Box ۷۶۳۱۵-۱۱۷, Kerman, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :