Comparative Evaluation of Deep Learning Architectures for Printed and Handwritten Farsi OCR

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-14-1_002

تاریخ نمایه سازی: 6 دی 1404

چکیده مقاله:

Farsi optical character recognition remains challenging due to the script’s cursive structure, positional glyph variations, and frequent diacritics. This study conducts a comparative evaluation of five foundational deep learning architectures widely used in OCR—two lightweight CRNN based models aimed at efficient deployment and three Transformer based models designed for advanced contextual modeling—to examine their suitability for the distinct characteristics of Farsi script. Performance was benchmarked on four publicly available datasets: Shotor and IDPL PFOD۲ for printed text, and Iranshahr and Sadri for handwritten text, using word level accuracy, parameter count, and computational cost as evaluation criteria. CRNN based models achieved high accuracy on word level datasets—۹۹.۴۲% (Shotor), ۹۷.۰۸% (Iranshahr), ۹۸.۸۶% (Sadri)—while maintaining smaller model sizes and lower computational demands. However, their accuracy dropped to ۷۸.۴۹% on the larger and more diverse line level IDPL PFOD۲ dataset. Transformer based models substantially narrowed this performance gap, exhibiting greater robustness to variations in font, style, and layout, with the best model reaching ۹۲.۸۱% on IDPL PFOD۲. To the best of our knowledge, this work is among the first comprehensive comparative studies of lightweight CRNN and Transformer based architectures for Farsi OCR, encompassing both printed and handwritten scripts, and establishes a solid performance baseline for future research and deployment strategies.

نویسندگان

Fatemeh Asadi-Zeydabadi

Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Ali Afkari-Fahandari

Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Elham Shabaninia

Department of Applied Mathematics, Graduate University of Advanced Technology, Kerman, Iran.

Hossein Nezamabadi-pour

Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Indravadanbhai Patel, D. Patel, C. Patel Smt Chandaben Mohanbhai, ...
  • F. Asadi-Zeydabadi, E. Shabaninia, H. Nezamabadi-Pour, and M. Shojaee, “Farsi ...
  • T. T. H. Nguyen, A. Jatowt, M. Coustaty, and A. ...
  • E. Shabaninia, F. Asadi, and H. Nezamabadi_pour, “Enhancing License Plate ...
  • A. Risnumawan, P. Shivakumara, C. S. Chan, and C. L. ...
  • R. Gossweiler, M. Kamvar, and S. Baluja, “What’s up CAPTCHA? ...
  • A. Afkari-Fahandari, E. Shabaninia, F. Asadi-Zeydabadi, and H. Nezamabadi-Pour, “A ...
  • A. Afkari-Fahandari, F. Asadi-Zeydabadi, E. Shabaninia, and H. Nezamabadi-pour, “Farsi ...
  • D. V. Sang and L. T. B. Cuong, “Improving CRNN ...
  • F. Asadi-zeydabadi, A. Afkari-Fahandari, A. Faraji, E. Shabaninia, and H. ...
  • A. Afkari-Fahandari, F. Asadi-Zeydabadi, E. Shabaninia, and H. Nezamabadi-Pour, “Enhancing ...
  • A. Nasr-Esfahani, M. Bekrani, and R. Rajabi, “Robust Persian Digit ...
  • M. A. KO and S. Poruran, “OCR-nets: variants of pre-trained ...
  • M. Elleuch, R. Maalej, and M. Kherallah, “A new design ...
  • L. Bouchakour, F. Meziani, H. Latrache, K. Ghribi, and M. ...
  • R. Ahmad, M. Z. Afzal, S. F. Rashid, M. Liwicki, ...
  • S. Rawls, H. Cao, E. Sabir, and P. Natarajan, “Combining ...
  • S. Naz, A. I. Umar, R. Ahmed, M. I. Razzak, ...
  • R. Maalej and M. Kherallah, “Convolutional neural network and BLSTM ...
  • M. Bonyani, S. Jahangard, and M. Daneshmand, “Persian handwritten digit, ...
  • S. Khosravi and A. Chalechale, “Recognition of Persian/Arabic handwritten words ...
  • V. M. Safarzadeh and P. Jafarzadeh, “Offline Persian handwriting recognition ...
  • M. Akhlaghi and V. Ghods, “Farsi handwritten phone number recognition ...
  • A. Fateh, M. Fateh, and V. Abolghasemi, “Enhancing optical character ...
  • M. S. Anari, K. Rezaee, and A. Ahmadi, “TraitLWNet: a ...
  • A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist ...
  • N. A. M. Isheawy and H. Hasan, “Optical character recognition ...
  • J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, ...
  • T.Brown et al., “Language models are few-shot learners, in Advances ...
  • F. olimanpour, J. Sadri, and C. Y. Suen, “Standard databases ...
  • S. Mozaffari, K. Faez, F. Faradji, M. Ziaratban, and S. ...
  • A. Zohrevand and Z. Imani, “Holistic persian handwritten word recognition ...
  • M. F. Y. Ghadikolaie, E. Kabir, and F. Razzazi, “Sub‐word ...
  • نمایش کامل مراجع