Predicting students’ grades using fuzzy non-parametric regression method and ReliefF-based algorithm
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 833
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ACSIJ-3-2_007
تاریخ نمایه سازی: 24 فروردین 1393
چکیده مقاله:
In this paper we introduce two new approaches to predict the grades that university students will acquire in the final exam of a course and improve the obtained result on some featuresextracted from logged data in an educational web-based system. First we start with a new approach based on Fuzzy nonparametricregression; next, we introduce a simple algorithm using ReliefF estimated weights. The first prediction technique is yielded by integrating ridge regression learning algorithm in the Lagrangian dual space. In this approach, the distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross validation procedure for selecting the optimal value of the smoothing parameter isfuzzified to fit the presented model. Second approach is based on ReliefF attribute estimation as a weighting vector to find the bestadjusted results. Finally, to check the efficiency of the new proposed approaches, the most popular techniques of traditional data mining methods are compared with the presented methods
کلیدواژه ها:
نویسندگان
Javad Ghasemian
School of Mathematics and Computer Sciences, Damghan University Damghan, Iran
Mahmoud Moallem
School of Mathematics and Computer Sciences, Damghan University Damghan, Iran
Yasin Alipour
Information Technology Department, Damghan University Damghan, Iran